Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287779

RESUMO

Ginger (Zingiber officinale Roscoe) has traditionally been used as a cooking spice and herbal medicine for treating nausea and vomiting. More recently, ginger was found to effectively reduce the risk of diseases such as gastroenteritis, migraine, gonarthritis, etc., due to its various bioactive compounds. 6-Shogaol, the pungent phenolic substance in ginger, is the most pharmacologically active among such compounds. The aim of the present study was to review the pharmacological characteristic of 6-shogaol, including the properties of anti-inflammatory, antioxidant and antitumour, and its corresponding molecular mechanism. With its multiple mechanisms, 6-shogaol is considered a beneficial natural compound, and therefore, this review will shed some light on the therapeutic role of 6-shogaol and provide a theoretical basis for the development and clinical application of 6-shogaol.

2.
PLoS One ; 18(10): e0293283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903144

RESUMO

The mitotic regulator, Aurora kinase B (AURKB), is frequently overexpressed in malignancy and is a target for therapeutic intervention. The compound, LXY18, is a potent, orally available small molecule that inhibits the proper localization of AURKB during late mitosis, without affecting its kinase activity. In this study, we demonstrate that LXY18 elicits apoptosis in cancer cells derived from various indications, but not in non-transformed cell lines. The apoptosis is p53-independent, triggered by a prolonged mitotic arrest and occurs predominantly in mitosis. Some additional cells succumb post-mitotic slippage. We also demonstrate that cancer cell lines refractory to AURKB kinase inhibitors are sensitive to LXY18. The mitotic proteins MKLP2, NEK6, NEK7 and NEK9 are known regulators of AURKB localization during the onset of anaphase. LXY18 fails to inhibit the catalytic activity of these AURKB localization factors. Overall, our findings suggest a novel activity for LXY18 that produces a prolonged mitotic arrest and lethality in cancer cells, leaving non-transformed cells healthy. This new activity suggests that the compound may be a promising drug candidate for cancer treatment and that it can also be used as a tool compound to further dissect the regulatory network controlling AURKB localization.


Assuntos
Aurora Quinase A , Neoplasias , Humanos , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Morte Celular , Mitose , Neoplasias/tratamento farmacológico , Quinases Relacionadas a NIMA
3.
RSC Adv ; 13(41): 28389-28394, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37766931

RESUMO

A novel Bi13S18I2 structure was synthesized using a facile one-pot hydrothermal method and further optimized as an anode material using graphene. The graphene/Bi13S18I2 composite achieved a high discharge capacity with an initial value of 1126.5 mA h g-1 and a high and stable discharge capacity of 287.1 mA h g-1 after 500 cycles compared with pure Bi13S18I2, which derives from the inhibited volume expansion and high electrical conductivity obtained from graphene. In situ XRD was performed to analyze the Li storage mechanism in depth. The results support the feasibility of the new ternary sulfide Bi13S18I2 as a promising lithium ion battery.

4.
ACS Pharmacol Transl Sci ; 6(8): 1155-1163, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588758

RESUMO

We investigated a novel 4-phenoxy-quinoline-based scaffold that mislocalizes the essential mitotic kinase, Aurora kinase B (AURKB). Here, we evaluated the impact of halogen substitutions (F, Cl, Br, and I) on this scaffold with respect to various drug parameters. Br-substituted LXY18 was found to be a potent and orally bioavailable disruptor of cell division, at sub-nanomolar concentrations. LXY18 prevents cytokinesis by blocking AURKB relocalization in mitosis and exhibits broad-spectrum antimitotic activity in vitro. With a favorable pharmacokinetic profile, it shows widespread tissue distribution including the blood-brain barrier penetrance and effective accumulation in tumor tissues. More importantly, it markedly suppresses tumor growth. The novel mode of action of LXY18 may eliminate some drawbacks of direct catalytic inhibition of Aurora kinases. Successful development of LXY18 as a clinical candidate for cancer treatment could enable a new, less toxic means of antimitotic attack that avoids drug resistance mechanisms.

5.
Bioorg Med Chem ; 80: 117173, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36696874

RESUMO

We combined a mechanism-informed phenotypic screening (MIPS) assay with a structural simplification strategy to guide the discovery of compounds that disrupt the localization of the mitotic regulator, Aurora kinase B (AURKB), rather than inhibiting its catalytic activity. An initial hit 4-(4-methylthiophen-2-yl)-N-(4-(quinolin-4-yloxy)phenyl)phthalazin-1-amine was identified after screening an in-house library of small molecules and phenocopied the loss of function mutations in AURKB without inhibiting its catalytic activity. We isolated this hit compound activity to its 4-phenoxy-quinoline moiety. The fragment was further optimized into a class of new chemical entities that potently disrupt the mitotic localization of AURKB at low nanomolar concentrations and consequently elicit severe growth inhibition in diverse human cancer cell lines. A lead compound, N-(3-methoxy-5-(6-methoxyquinolin-4-yl)oxy)phenyl)acetamide possessed desirable pharmacokinetic properties such as AUC0-∞: 227.15 [ng∙h/mL/(mg/kg)]; Cmax: 3378.52 ng/mL T1/2: 3.52 h; and F%: 42 % and produced the AURKB-inhibitory phenotypes in a mouse xenograft model. A lead compound is a powerful tool for interrogating the regulation of AURKB and has the potential to be further developed as a first-in-class oncology therapeutic.


Assuntos
Neoplasias , Quinolinas , Humanos , Camundongos , Animais , Aurora Quinase B , Fenótipo , Aurora Quinase A/metabolismo
6.
Eur J Med Chem ; 245(Pt 1): 114904, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36413818

RESUMO

Activity-based drug screens have successfully led to the development of various inhibitors of the catalytic activity of aurora kinases (AURKs), major regulatory kinases of cell division. Disrupting the localization of AURKB, rather than its catalytic activity, represents a largely unexplored alternative approach to disabling AURKB-dependent processes. Localization disruptors could be just as specific as direct inhibitors of AURKB activity, may bypass their off-target and select on-target toxicities, and are likely less susceptible to drug resistance resulting from mutations of the AURKB catalytic site. In this study, we demonstrate that the pan-AURK inhibitor AMG900 works at a low concentration not by inhibiting the phosphorylation of H3 at Ser10, an AURKB substrate, but by disrupting the mitotic localization of AURKB. Structural deletion studies pinpoint this undescribed activity to the 2-phenoxy-3,4'-bipyridine moiety of AMG900. Guided by a mechanism-informed phenotypic screening (MIPS) assay, the drug fragment is optimized into a novel class of inhibitors that, at low nanomolar concentrations, can disable AURKB through disruption of its mitotic localization and have desirable oral PK properties. Hierarchical clustering of cell fitness profiles reveals that these compounds cluster with each other, rather than with known AURK inhibitors such as AMG900 and VX-680. Validation studies in mice demonstrate that compound 15a elicits mitotic arrest and apoptosis in NCI-H23 human lung adenocarcinoma xenografts, resulting in a pronounced suppression of tumor growth. The discovery and optimization of compounds that disrupt AURKB localization are successfully facilitated by MIPS. Our findings suggest that 2-phenoxy-3, 4'-bipyridine derivatives have the potential to be further developed as effective therapeutics for the treatment of malignancy by delocalizing AURKB.


Assuntos
Compostos Heterocíclicos , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Mitose , Aurora Quinases , Fosforilação , Aurora Quinase B
7.
Front Immunol ; 13: 960094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389744

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed serious threats to global health and economy and calls for the development of safe treatments and effective vaccines. The receptor-binding domain in the spike protein (SRBD) of SARS-CoV-2 is responsible for its binding to angiotensin-converting enzyme 2 (ACE2) receptor. It contains multiple dominant neutralizing epitopes and serves as an important antigen for the development of COVID-19 vaccines. Here, we showed that dimeric SRBD-Fc and tetrameric 2xSRBD-Fc fusion proteins bind ACE2 with different affinity and block SARS-CoV-2 pseudoviral infection. Immunization of mice with SRBD-Fc fusion proteins elicited high titer of RBD-specific antibodies with robust neutralizing activity against pseudoviral infections. As such, our study indicates that the polymeric SRBD-Fc fusion protein can serve as a treatment agent as well as a vaccine for fighting COVID-19.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Camundongos , Animais , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral , Vacinas contra COVID-19 , Glicoproteínas de Membrana/metabolismo
8.
ACS Med Chem Lett ; 13(7): 1091-1098, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35859866

RESUMO

We used mechanism-informed phenotypic screening to identify and optimize compounds that phenocopy the genetic depletion of the mitotic aurora kinase B (AURKB) kinase. After assaying nine aryl fused seven-membered lactam compounds, we identified a hit compound 6a that was subsequently optimized to five lead compounds with low nanomolar activity, represented by the lead compound 6v (19 nM). With excellent drug-like properties, these compounds reproduced the loss of function in phenotypes of AURKB and exhibited potent cytotoxic activities in various cancer cell lines. Collectively, these data support that seven-membered lactam-based analogs might be valuable for further development as a new type of antimitotic agents for the treatment of cancer.

9.
Br J Cancer ; 115(12): 1555-1564, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27875523

RESUMO

BACKGROUND: The production of autoantibodies against tumour-associated antigens (TAAs) is believed to reflect greater immunologic reactivity in cancer patients and enhanced immune surveillance for cancer cells. Over the past few decades, a number of different TAAs and their corresponding autoantibodies have been investigated. However, positive frequency of autoantibody detection in cancer patients has been relatively low. Here we describe a novel TAA that was a fragment derived from human DNA-topoiomerase I and an autoantibody against the novel TAA with relatively high positive frequency in the sera of early-stage non-small-cell lung cancer (NSCLC), gastric cancer (GC), colorectal cancer (CRC) and oesophageal squamous cell carcinoma (ESCC). METHODS: Serologic enzyme-linked immunosorbent assay (ELISA) and western blot were used to discover a novel TAA with a molecular weight of 48 kDa separated by ion exchange chromatography. Autoantibody ELISA, immnohistochemistry and immunofluorescent staining, recombinant protein cloning/expression and western blot were used to identify the novel TAA. The association of the autoantibody against the novel TAA with early-stage carcinoma was explored by screening 203 stage I/II patients and 170 stage III/IV patients with NSCLC, GC, CRC or ESCC. RESULTS: We identified the novel TAA as a fragment derived from human DNA-topoiomerase I (TOP1). We found that the novel TAA induced specific autoantibodies with a high prevalence that ranged from 58 to 72% in some of the most common types of cancer. We observed that the immune response against the novel TAA was associated with early stage ESCC, GC, CRC and NSCLC. CONCLUSIONS: The findings in this study suggest that the autoantibody against the novel TAA may be a potential biomarker for use in the early detection and diagnosis of cancer.


Assuntos
Antígenos de Neoplasias/imunologia , DNA Topoisomerases Tipo I/metabolismo , Neoplasias/diagnóstico , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática , Humanos , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...